Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.382
Filtrar
1.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543009

RESUMO

Epigallocatechin gallate (EGCG) is a catechin, which is a type of flavonoid found in high concentrations in green tea. EGCG has been studied extensively for its potential health benefits, particularly in cancer. EGCG has been found to exhibit anti-proliferative, anti-angiogenic, and pro-apoptotic effects in numerous cancer cell lines and animal models. EGCG has demonstrated the ability to interrupt various signaling pathways associated with cellular proliferation and division in different cancer types. EGCG anticancer activity is mediated by interfering with various cancer hallmarks. This article summarize and highlight the effects of EGCG on cancer hallmarks and focused on the impacts of EGCG on these cancer-related hallmarks. The studies discussed in this review enrich the understanding of EGCG's potential as a therapeutic tool against cancer, offering a substantial foundation for scientists and medical experts to advance scientific and clinical investigations regarding EGCG's possibility as a potential anticancer treatment.


Assuntos
Catequina , Catequina/análogos & derivados , Neoplasias , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Neoplasias/tratamento farmacológico , Proliferação de Células , Transdução de Sinais , Chá
2.
J Mater Chem B ; 12(15): 3719-3740, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529844

RESUMO

Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.


Assuntos
Catequina , Periodontite Crônica , Diabetes Mellitus Experimental , Sistemas de Liberação de Medicamentos , Glucose , Espécies Reativas de Oxigênio , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Periodontite Crônica/complicações , Periodontite Crônica/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Animais , Ratos , Catequina/administração & dosagem , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Reologia , Hidrogéis , Antioxidantes/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Osteoclastos/citologia , Osteoblastos/citologia , Diferenciação Celular , Regeneração Óssea/efeitos dos fármacos , Microtomografia por Raio-X , Perda do Osso Alveolar/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Alginatos , Bases de Schiff , Masculino , Ratos Sprague-Dawley , Células RAW 264.7 , Camundongos
3.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398883

RESUMO

The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.


Assuntos
Catequina , Catequina/análogos & derivados , Endometriose , Leiomioma , Síndrome do Ovário Policístico , Feminino , Humanos , Endometriose/tratamento farmacológico , Endometriose/genética , Endometriose/patologia , Epigênese Genética , Síndrome do Ovário Policístico/tratamento farmacológico , Qualidade de Vida , Catequina/farmacologia , Catequina/uso terapêutico , Chá
4.
Redox Biol ; 70: 103075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364686

RESUMO

Subarachnoid hemorrhage (SAH), a devastating disease with a high mortality rate and poor outcomes, tightly associated with the dysregulation of iron metabolism and ferroptosis. (-)-Epigallocatechin-3-gallate (EGCG) is one of major bioactive compounds of tea catechin because of its well-known iron-chelating and antioxidative activities. However, the findings of iron-induced cell injuries after SAH remain controversial and the underlying therapeutic mechanisms of EGCG in ferroptosis is limited. Here, the ability of EGCG to inhibit iron-induced cell death following the alleviation of neurological function deficits was investigated by using in vivo SAH models. As expected, EGCG inhibited oxyhemoglobin (OxyHb)-induced the over-expression of HO-1, which mainly distributed in astrocytes and microglial cells. Subsequently, EGCG blocked ferrous iron accumulation through HO-1-mediated iron metabolic reprogramming. Therefore, oxidative stress and mitochondrial dysfunction was rescued by EGCG, which resulted in the downregulation of ferroptosis and ferritinophagy rather than apoptosis after SAH. As a result, EGCG exerted the superior therapeutic effects in the maintenance of iron homeostasis in glial cells, such as astrocytes and microglial cells, as well as in the improvement of functional outcomes after SAH. These findings highlighted that glial cells were not only the iron-rich cells in the brain but also susceptible to ferroptosis and ferritinophagy after SAH. The detrimental role of HO-1-mediated ferroptosis in glial cells can be regarded as an effective therapeutic target of EGCG in the prevention and treatment of SAH.


Assuntos
Catequina , Catequina/análogos & derivados , Ferroptose , Hemorragia Subaracnóidea , Humanos , Catequina/farmacologia , Catequina/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Ferro
5.
Curr Top Med Chem ; 24(1): 60-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38291871

RESUMO

Over the centuries, influenza and its associated epidemics have been a serious public health problem. Although vaccination and medications (such as neuraminidase inhibitors) are the mainstay of pharmacological approaches to prevent and treat influenza, however, frequent mutations in the influenza genome often result in treatment failure and resistance to standard medications which limit their effectiveness. In recent years, green tea catechins have been evaluated as potential anti-influenza agents. Herein, in this review, we highlighted the effects and mechanisms underlying the inhibitory effects of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea, against different influenza viral infections, and their clinical benefits toward prevention and treatment. In addition, as the severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) causes the outbreak of COVID-19 pandemic, our review also delineates the current perspective on SARS-CoV-2 and future insights as to the potential application of EGCG on suppressing the flu-like symptoms caused by COVID-19.


Assuntos
COVID-19 , Catequina , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Chá , Catequina/farmacologia , Catequina/uso terapêutico , Pandemias , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Percepção
6.
Aging (Albany NY) ; 16(3): 2181-2193, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38277217

RESUMO

AIM: (-)-Epicatechin (EPI) has physiological activities such as antioxidant, anti-inflammatory and immune enhancement. In this study, we elucidated the protective effects of EPI in myocardial ischemia/reperfusion injury (MI/RI) and its mechanisms. METHODS: An in vivo I/R model was constructed by performing left anterior descending coronary artery surgery on rats, and an in vitro I/R model was constructed by subjecting hypoxia/reperfusion treatment on H9C2 cells. The damage of cardiac tissues was detected by 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H&E) staining, and expressions of ferroptosis-related proteins were examined by Western blot. Changes in the number of autophagosomes, the levels of oxidative stress and Fe2+ were also examined. RESULTS: EPI reduced abnormal electrocardiogram waveform and infarct size caused by MI/RI in rats. The increasing trend of levels of reactive oxygen species (ROS) and Fe2+ was reversed by EPI, suggesting that EPI can reduce ferroptosis in vivo. Moreover, the levels of lipid ROS and LC3 in H9C2 cells were decreased with EPI treatment, and autophagy and ferroptosis were also alleviated in a dose-dependent manner in vitro. Co-cultivation of USP14 inhibitor IU1 and EPI further revealed that EPI regulates ferroptosis through the USP14-autophagy pathway. CONCLUSIONS: EPI can reduce the level of oxidative stress by promoting USP14 to reduce autophagy, thus inhibiting autophagy dependent ferroptosis and reducing oxidative stress, and has a protective effect on myocardial infarction/myocardial infarction.


Assuntos
Catequina , Ferroptose , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Autofagia , Infarto do Miocárdio/metabolismo
7.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276564

RESUMO

Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.


Assuntos
Catequina , Animais , Humanos , Catequina/farmacologia , Catequina/uso terapêutico , Catequina/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Proteína MyoD/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Clin Exp Nephrol ; 28(2): 136-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847436

RESUMO

BACKGROUND: Burn patients often face a high risk of acute kidney injury (AKI) after severe burn injuries, meanwhile epigallocatechin-3-gallate (EGCG) has been proven to be effective in alleviating organ injury. METHODS: This study used the classical burn model in rats. Thirty model rats were randomly divided into a Burn group, a Burn + placebo group, a Burn + EGCG (50 mg/kg) group, and ten non-model rats as Sham group. The urinary excretion of the rats was subsequently monitored for a period of 48 h. After 48 h of different treatments, rat serum and kidneys were taken for the further verification. The efficacy of EGCG was assessed in pathological sections, biochemical indexes, and at the molecular level. RESULTS: Pathological sections were compared between the Burn group and Burn + placebo group. The rats in the Burn + EGCG group had less kidney damage. Moreover, the EGCG group maintained significantly elevated urine volumes, biochemical indexes manifested that EGCG could reduce serum creatinine (Cr) and neutrophil gelatinase-associated lipocalin (NGAL) level and inhibit the oxidation-related enzyme malondialdehyde (MDA) level, meanwhile the superoxide dismutase (SOD) level was increased. The molecular level showed that EGCG significantly reduced the mRNA expression levels of the inflammation-related molecules interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CONCLUSION: The research indicated that EGCG had an alleviating effect on kidney injury in severely burned rats, and its alleviating effects were related to improving kidney functions, alleviating oxidative stress, and inhibiting the expression of inflammatory factors.


Assuntos
Injúria Renal Aguda , Queimaduras , Catequina , Humanos , Ratos , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Rim/patologia , Catequina/farmacologia , Catequina/uso terapêutico , Catequina/metabolismo , Fator de Necrose Tumoral alfa , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo
9.
CNS Neurosci Ther ; 30(2): e14364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37464589

RESUMO

AIMS: The aim of this study was to evaluate the effect of epicatechin, on neurological recovery and neuroinflammation after traumatic brain injury (TBI) to investigate its potential value in clinical practice. METHODS: TBI model was established in adult rats by CCI method. The effect of epicatechin was evaluated after intraperitoneal injection. Neurological recovery after TBI was assessed by Morris Water Maze, mNSS score, Rotarod test and Adhesive removal test. Protein and gene expression was assessed by Western blot, ELISA, PCR and immunofluorescence. Furthermore, the use of AKT pathway inhibitors blocked the therapeutic effects of epicatechin clarifying AKT-P53/CREB as a potential pathway for the effects of epicatechin. RESULTS: Administering epicatechin after TBI prevented neuronal death, reduced neuroinflammation, and promoted neurological function restoration in TBI rats. Network pharmacology study suggested that epicatechin may exert its therapeutic benefits through the AKT-P53/CREB pathway CONCLUSION: These results indicate that epicatechin, a monomeric compound derived from tea polyphenols, possesses potent antioxidant and anti-inflammatory properties after TBI. The mechanism may be related to the regulation of the AKT-P53/CREB signal pathway.


Assuntos
Lesões Encefálicas Traumáticas , Catequina , Animais , Ratos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Catequina/farmacologia , Catequina/uso terapêutico , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
J Appl Biomater Funct Mater ; 21: 22808000231218996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131321

RESUMO

With the rising incidence of cancer, radiotherapy has become an increasingly popular treatment modality. However, radiation-induced skin injuries (RSIs) have emerged as a commonly reported side effect of radiotherapy, thereby presenting a significant challenge in the field of radiotherapy. In this study, we report the successful synthesis of a photosensitive hydrogel via amide reaction for grafting the photosensitive group, methacrylate anhydride (MA), onto chitosan (CHI) and gelatin (GEL), with subsequent physical incorporation of epigallocatechin gallate (EGCG). The resulting composite photosensitive hydrogels exhibited favorable swelling properties, rheological properties, and biocompatibility, which promote angiogenesis and demonstrate notable therapeutic efficacy against RSIs. These findings provide valuable insights into the clinical utility of EGCG composite hydrogels for the effective management of RSIs.


Assuntos
Catequina , Hidrogéis , Catequina/farmacologia , Catequina/uso terapêutico , Gelatina
11.
Eur J Pharmacol ; 961: 176204, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979829

RESUMO

Age-related cataract (ARC) is a common eye disease, the main cause of which is oxidative stress-mediated apoptosis of lens epithelial cells (LECs). Epigallocatechin gallate (EGCG) is the most potent antioxidant in green tea. Our results demonstrated that EGCG could effectively reduce apoptosis of LECs and retard lens clouding in aged mice. By comparing transcriptome sequencing results of three groups of mice (young control, untreated aged, and EGCG-treated) and screening using GO and KEGG analyses, we selected RASSF2 as the effector gene of EGCG for mechanistic exploration. We verified that the differential expression of RASSF2 was associated with the occurrence of ARC in clinical samples and mouse tissues by immunohistochemistry and western blotting, respectively. We showed that high RASSF2 expression plays a crucial role in the oxidative induction of apoptosis in LECs, as revealed by overexpression and interference experiments. Further studies showed that RASSF2 mediates the inhibitory effect of EGCG on apoptosis and ARCogenesis in LECs by regulating AKT (Ser473) phosphorylation. In this study, we found for the first time the retarding effect of EGCG on lens clouding in mice and revealed the mechanism of action of RASSF2/AKT in it, which provides a theoretical basis for the targeted treatment of EGCG.


Assuntos
Catarata , Catequina , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Catequina/farmacologia , Catequina/uso terapêutico , Apoptose , Catarata/tratamento farmacológico , Catarata/prevenção & controle , Chá
12.
Cell Stress Chaperones ; 28(6): 921-933, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37875765

RESUMO

Exposure to hypobaric hypoxia (HH) environment causes stress to the body, especially the oxygen-consuming organs. Chronic HH conditions have adverse effects on the myocardium. Thus, we conducted this experiment and aim to evaluate such adverse effects and explore the therapeutic role of epigallocatechin-3-gallate (EGCG) in rats' heart under chronic HH conditions. For that purpose, we transported rats from plain to a real HH environment at high altitude for establishing the HH model. At high altitude, animals were treated with EGCG while the salidroside was used as the positive control. General physiological data were collected, and routine blood test results were analyzed. Cardiac magnetic resonance (CMR) was examined to assess the structural and functional changes of the heart. Serum levels of cardiac enzymes and pro-inflammatory cytokines were examined. Oxidative markers in the left ventricle (LV) were detected. Additionally, ultrastructural and histopathological changes and apoptosis of the LV were assessed. Furthermore, the antioxidant stress-relevant proteins nuclear factor E2-related factor 2 (Nrf2) and the heme oxygenase-1 (HO-1) were detected. The experiment revealed that EGCG treatment decreased HH-induced elevation of cardiac enzymes and relieved mitochondrial damage of the LV. Notably, EGCG treatment significantly alleviated oxidative stress in the LV and inflammatory response in the blood. Western blot confirmed that EGCG significantly upregulated Nrf2 and HO-1. Therefore, EGCG may be considered a promising natural compound for treating the HH-induced myocardial injuries.


Assuntos
Altitude , Catequina , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Antioxidantes/metabolismo , Estresse Oxidativo , Catequina/farmacologia , Catequina/uso terapêutico , Hipóxia/tratamento farmacológico
13.
Life Sci ; 333: 122144, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797687

RESUMO

AIM: The present study aims to identify selective estrogen receptor beta (ERß) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS: In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS: Cianidanol was identified as a selective ERß agonist through virtual screening. The cianidanol-ERß complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 µM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 µM) increases the expression of ERß, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 µM) were reversed in the presence of a selective ERß antagonist. In this study, we found that selective activation of ERß could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE: Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.


Assuntos
Catequina , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor beta de Estrogênio , Catequina/uso terapêutico , Rotenona/farmacologia , Neuroblastoma/tratamento farmacológico , Estrogênios/uso terapêutico , Modelos Animais de Doenças
14.
Diabetes Metab Syndr ; 17(10): 102856, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37742361

RESUMO

BACKGROUND AND AIM: Sarcopenic Obesity (SO) in the elderly population is a complex and multifactorial condition which refers to the loss of skeletal muscle mass, strength, and function associated with aging, while obesity involves excessive adipose tissue accumulation. The simultaneous occurrence of these two conditions presents a unique set of challenges to public health and clinical management. This narrative review aims to provide an overview of the use of epicatechin (EC) in the treatment of SO and its related complications. METHOD: A survey of studies related to preclinical and clinical evidence of Epicatechin in sarcopenic obesity and its complications was performed in the following database Medline, Scopus, ProQuest, Embase, Web of Science, and Google scholar. Followed by structural activity relationship and pharmacokinetic profile of Epicatechin was discussed in this paper. RESULTS: The main pharmacological effect of Epicatechin is myostatin inhibition activity which has been described by both in vitro and in vivo studies earlier. The SO is directly correlated with the alteration of Myostatin. The pre-clinical and clinical studies suggest that epicatechin can be a potential candidate in the management of SO and its related complication. CONCLUSION: The present review describes the pharmacokinetic profile and structural activity of epicatechin respective to SO and its related complications. The goal of this review is to update the scientific community on the therapeutic potential of epicatechin in SO and age-related factors. Conduction of clinical and pre-clinical trials, also drug dosage optimization may provide with insights on the use of epicatechin in SO.


Assuntos
Catequina , Sarcopenia , Idoso , Humanos , Sarcopenia/tratamento farmacológico , Sarcopenia/etiologia , Catequina/uso terapêutico , Catequina/farmacologia , Miostatina/farmacologia , Músculo Esquelético/fisiologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/epidemiologia
15.
Int J Biol Macromol ; 253(Pt 3): 127002, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729983

RESUMO

The formation of Aß into amyloid fibrils was closely connected to AD, therefore, the Aß aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aß amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the ß-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.


Assuntos
Doença de Alzheimer , Catequina , Humanos , Simulação de Dinâmica Molecular , Peptídeos beta-Amiloides/química , Catequina/farmacologia , Catequina/uso terapêutico , Amiloide/química , Cátions , Eletrocardiografia , Fragmentos de Peptídeos/química , Doença de Alzheimer/tratamento farmacológico
16.
Sci Rep ; 13(1): 14050, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640837

RESUMO

This meta-analysis aims to determine the efficacy of Epigallocatechin gallate (EGCG) in the treatment of myocardial ischemia-reperfusion injury (MIRI) and summarize the mechanisms involved. Literature from six databases including Web of Science, PubMed, Embase, China National Knowledge Infrastructure (CNKI), Wan-Fang database, and VIP database (VIP) were systematically searched. All the analysis were conducted by R. Twenty-five eligible studies involving 443 animals were included in this meta-analysis. The results indicated that compared to controls, EGCG exerts a cardioprotective effect by reducing myocardial infarct size (SMD = -4.06; 95% CI: -5.17, -2.94; P < 0.01; I2 = 77%). The funnel plot revealed publication bias. Moreover, EGCG significantly improves cardiac function, serum myocardial injury enzyme, and oxidative stress levels in MIRI animal models. This meta-analysis demonstrates that EGCG exhibits therapeutic promise in animal models of MIRI. However, further validation is still needed in large animal models and large clinical studies.


Assuntos
Catequina , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Animais de Laboratório , Catequina/farmacologia , Catequina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico
17.
ACS Biomater Sci Eng ; 9(9): 5322-5331, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540564

RESUMO

Epigallocatechin gallate (EGCG) is a compound with very high therapeutic potential in the treatment of osteoporosis and cancer. The disadvantages of this compound are its low stability and low bioavailability. Therefore, carriers for EGCG are sought to increase its use. In this work, new carriers are proposed, i.e., zeolites containing divalent ions of magnesium, calcium, strontium, and zinc in their structure. EGCG is retained on the carrier surface by strong interactions with divalent ions. Due to the presence of strong interactions, EGCG is released in a controlled manner from the carrier-ion-EGCG drug delivery system. The results obtained in this work confirm the effectiveness of the preparation of new carriers. EGCG is released from the carriers depending on the pH; hence, it can be used both in osteoporosis and in the treatment of cancer. The divalent ion used affects the sorption and release of the drug. The obtained results indicate the great potential of the proposed carriers and their advantage over the carriers described in the literature.


Assuntos
Catequina , Zeolitas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Catequina/uso terapêutico , Catequina/química
18.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446908

RESUMO

Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.


Assuntos
Catequina , Neoplasias , Humanos , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/tratamento farmacológico , NF-kappa B/metabolismo , Chá , Catequina/farmacologia , Catequina/uso terapêutico , Apoptose
19.
Nutrients ; 15(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447347

RESUMO

Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.


Assuntos
Catequina , Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Humanos , Chá , Diabetes Mellitus Tipo 2/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Catequina/farmacologia , Catequina/uso terapêutico , Obesidade/complicações , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Polifenóis/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/complicações
20.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445915

RESUMO

Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%. Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of 13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA. These properties were proved in vitro and in vivo together with synergistic effects in combination with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep development, the molecular and signal pathways involved, the synergistic effects in combination with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.


Assuntos
Neoplasias da Mama , Catequina , Humanos , Feminino , Neoplasias da Mama/metabolismo , Catequina/farmacologia , Catequina/uso terapêutico , Polifenóis/farmacologia , Mama/metabolismo , Transdução de Sinais , Apoptose , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...